On the First Integral Conjecture of René Thom Jacky CRESSON , Aris DANIILIDIS & Masahiro SHIOTA

نویسندگان

  • René Thom
  • Jacky CRESSON
  • Aris DANIILIDIS
  • Masahiro SHIOTA
چکیده

More than half a century ago R. Thom asserted in an unpublished manuscript that, generically, vector fields on compact connected smooth manifolds without boundary can admit only trivial continuous first integrals. Though somehow unprecise for what concerns the interpretation of the word “generically”, this statement is ostensibly true and is nowadays commonly accepted. On the other hand, the (few) known formal proofs of Thom’s conjecture are all relying to the classical Sard theorem and are thus requiring the technical assumption that first integrals should be of class Ck with k ≥ d, where d is the dimension of the manifold. In this work, using a recent nonsmooth extension of Sard theorem we establish the validity of Thom’s conjecture for locally Lipschitz first integrals, interpreting genericity in the C1 sense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 7 On the First Integral Conjecture of René Thom

More than half a century ago R. Thom asserted in an unpublished manuscript that, generically, vector fields on compact connected smooth manifolds without boundary can admit only trivial continuous first integrals. Though somehow unprecise for what concerns the interpretation of the word “generically”, this statement is ostensibly true and is nowadays commonly accepted. On the other hand, the (f...

متن کامل

Clarke Subgradients of Stratifiable Functions

We establish the following result: if the graph of a lower semicontinuous real-extendedvalued function f : Rn → R ∪ {+∞} admits a Whitney stratification (so in particular if f is a semialgebraic function), then the norm of the gradient of f at x ∈ dom f relative to the stratum containing x bounds from below all norms of Clarke subgradients of f at x. As a consequence, we obtain a Morse-Sard typ...

متن کامل

A lambda-lemma for normally hyperbolic invariant manifolds

Let N be a smooth manifold and f : N → N be a C, l ≥ 2 diffeomorphism. Let M be a normally hyperbolic invariant manifold, not necessarily compact. We prove an analogue of the λ-lemma in this case.

متن کامل

About Analytic Non Integrability

We discuss non existence of analytic first integrals for analytic diffeomorphisms possessing a hyperbolic fixed point with a homoclinic connection.

متن کامل

N ov 2 00 8 LAGRANGIAN STRUCTURES FOR THE STOKES , NAVIER - STOKES AND EULER EQUATIONS by Jacky Cresson & Sébastien Darses

— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007